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Abstract— Liver cancer is one of the leading causes
of cancer death. To assist doctors in hepatocellular car-
cinoma diagnosis and treatment planning, an accurate
and automatic liver and tumor segmentation method is
highly demanded in the clinical practice. Recently, fully
convolutional neural networks (FCNs), including 2-D and
3-D FCNs, serve as the backbone in many volumetric
image segmentation. However, 2-D convolutions cannot
fully leverage the spatial information along the third dimen-
sion while 3-D convolutions suffer from high computational
cost and GPU memory consumption. To address these
issues, we propose a novel hybrid densely connected UNet
(H-DenseUNet), which consists of a 2-D DenseUNet for effi-
ciently extracting intra-slice features and a 3-D counterpart
for hierarchically aggregating volumetric contexts under
the spirit of the auto-context algorithm for liver and tumor
segmentation. We formulate the learning process of the
H-DenseUNet in an end-to-end manner, where the intra-slice
representations and inter-slice features can be jointly opti-
mized through a hybrid feature fusion layer. We exten-
sively evaluated our method on the data set of the MICCAI
2017 Liver Tumor Segmentation Challenge and 3DIRCADb
data set. Our method outperformed other state-of-the-arts
on the segmentation results of tumors and achieved very
competitive performance for liver segmentation even with a
single model.

Index Terms— CT, liver tumor segmentation, deep learn-
ing, hybrid features.

I. INTRODUCTION

L IVER cancer is one of the most common cancer dis-
eases in the world and causes massive deaths every

year [1], [2]. The accurate measurements from CT, including
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Fig. 1. Examples of contrast-enhanced CT scans showing the large
variations of shape, size, location of liver lesion. Each row shows a CT
scan acquired from individual patient. The red regions denote the liver
while the green ones denote the lesions (see the black arrows above).

tumor volume, shape, location and further functional liver
volume, can assist doctors in making accurate hepatocellular
carcinoma evaluation and treatment planning. Traditionally,
the liver and liver lesion are delineated by radiologists on
a slice-by-slice basis, which is time-consuming and prone to
inter- and intra-rater variations. Therefore, automatic liver and
liver tumor segmentation methods are highly demanded in the
clinical practice.

Automatic liver segmentation from the contrast-enhanced
CT volumes is a very challenging task due to the low inten-
sity contrast between the liver and other neighboring organs
(see the first row in Figure 1). Moreover, radiologists usually
enhance CT scans by an injection protocol for clearly observ-
ing tumors, which may increase the noise inside the images on
the liver region [3]. Compared with liver segmentation, liver
tumor segmentation is considered to be a more challenging
task. First, the liver tumor has various size, shape, location
and numbers within one patient, which hinders the automatic
segmentation, as shown in Figure 1. Second, some lesions do
not have clear boundaries, limiting the performance of solely
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edge based segmentation methods (see the lesions in the third
row of Figure 1). Third, many CT scans consist of anisotropic
dimensions with high variations along the z-axis direction (the
voxel spacing ranges from 0.45mm to 6.0mm), which further
poses challenges for automatic segmentation methods.

To tackle these difficulties, many segmentation methods
have been proposed, including intensity thresholding, region
growing, and deformable models. These methods, however,
rely on hand-crafted features, and have limited feature rep-
resentation capability. Recently, fully convolutional neural
networks (FCNs) have achieved great success on a broad
array of recognition problems [4]–[14]. Many researchers
advance this stream using deep learning methods in the
liver and tumor segmentation problem and the literature
can be classified into two categories broadly. (1) 2D FCNs,
such as UNet architecture [15], the multi-channel FCN [16],
and the FCN based on VGG-16 [17]. (2) 3D FCNs, where
2D convolutions are replaced by 3D convolutions with volu-
metric data input [18], [19].

In the clinical diagnosis, the experienced radiologist usually
observes and segments tumors according to many adjacent
slices along the z-axis. However, 2D FCN based methods
ignore the contexts on the z-axis, which would lead to lim-
ited segmentation accuracy. To be specific, single or three
adjacent slices cropped from volumetric images are fed into
2D FCNs [16], [17] and the 3D segmentation volume is
generated by simply stacking the 2D segmentation maps.
Although adjacent slices are employed, it is still not enough
to probe the spatial information along the third dimension,
which may degrade the segmentation performance. To solve
this problem, some researchers proposed to use tri-planar
schemes or RNN to probe the 3D contexts [4], [20], [21]. For
example, Prasoon et al. [4] applied three 2D FCNs on orthog-
onal planes (e.g., the xy, yz, and xz planes) and voxel predic-
tion results are generated by the average of these probabilities.
Compared to 2D FCNs, 3D FCNs suffer from high computa-
tional cost and GPU memory consumption. The high memory
consumption limits the depth of the network as well as the
filter’s field-of-view, which are the two key factors for perfor-
mance gains [22]. The heavy computation of 3D convolutions
also impedes the application in training a large-scale dataset.
Moreover, many researchers have demonstrated the effective-
ness of knowledge transfer (the knowledge learnt from one
source domain efficiently transferred to another domain) for
boosting the performance [23], [24]. Unfortunately, only a
dearth of 3D pre-trained model exists, which restricts the
performance and also the adoption of 3D FCNs.

To address the above problems, we proposed a novel
end-to-end system, called hybrid densely connected UNet
(H-DenseUNet), where intra-slice features and 3D contexts are
effectively probed and jointly optimized for accurate liver and
lesion segmentation. Our H-DenseUNet has the following two
technical achievements:

A. Deep and Efficient Network

First, to fully extract high-level intra-slice features,
we design a very deep and efficient network based on
the pre-defined design principles by 2D convolutions, called

2D DenseUNet, where the advantages of both densely con-
nected path [25] and UNet connections [5] are fused together.
Densely connected path is derived from densely connected
network (DenseNet), where the improved information flow and
parameters efficiency alleviate the difficulty for training the
deep network. Different from DenseNet [25], we add the UNet
connections, i.e., long-range skip connections, between the
encoding part and the decoding part in our architecture; hence,
the network can enable low-level spatial feature preservation
for better intra-slice context exploration.

B. Hybrid Feature Exploration

Second, to explore the volumetric feature representation,
we design an end-to-end training system, called H-DenseUNet,
where intra-slice and inter-slice features are effectively
extracted and then jointly optimized through the hybrid feature
fusion (HFF) layer. Specifically, 3D DenseUNet is integrated
with the 2D DenseUNet by the way of auto-context [26] mech-
anism, which is a general form of stacked generality [27]. With
the guidance of semantic probabilities from 2D DenseUNet,
the optimization burden in the 3D DenseUNet can be well
alleviated, which contributes to the training efficiency for
3D contexts extraction. Moreover, with the end-to-end system,
the hybrid feature, consisting of volumetric features and the
high-level representative intra-slice features, can be automati-
cally fused and jointly optimized together for better liver and
tumor recognition. In summary, this work has the following
achievements:

• We design a DenseUNet to effectively probe hierarchical
intra-slice features for liver and tumor segmentation,
where the densely connected path and UNet connec-
tions are carefully integrated based on pre-defined design
principles to improve the liver tumor segmentation
performance.

• We propose a H-DenseUNet framework to explore hybrid
(intra-slice and inter-slice) features for liver and tumor
segmentation. The hybrid feature learning architecture
well sidesteps the problems that 2D networks neglect the
volumetric contexts and 3D networks suffer from heavy
computational cost, and can be served as a new paradigm
for effectively exploiting 3D contexts.

• Our method ranked the 1st on lesion segmentation,
achieved very competitive performance on liver segmen-
tation in the 2017 LiTS Leaderboard, and also achieved
the state-of-the-art results on the 3DIRCADb Dataset.

II. RELATED WORK

A. Hand-Crafted Feature Based Methods

In the past decades, a lot of algorithms, including thresh-
olding [28], [29], region growing, deformable model based
methods [30], [31] and machine learning based meth-
ods [32]–[36] have been proposed to segment liver and liver
tumor. Threshold-based methods classified foreground and
background according to whether the intensity value is above
a threshold. Variations of region growing algorithms were also
popular in the liver and lesion segmentation task. For example,
Wong et al. [30] segmented tumors by a 2D region growing
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method with knowledge-based constraints. Level set methods
also attracted attentions from researchers with the advantages
of numerical computations involving curves and surfaces [37].
For example, Jimenez-Carretero et al. [31] proposed to clas-
sify tumors by a multi-resolution 3D level set method coupled
with adaptive curvature technique. A large variety of machine
learning based methods have also been proposed for liver
tumor segmentation. For example, Huang et al. [32] pro-
posed to employ the random feature subspace ensemble-based
extreme learning machine (ELM) for liver lesion segmentation.
Vorontsov et al. [33] proposed to segment tumors by support
vector machine (SVM) classifier and then refined the results
by the omnidirectional deformable surface model. Similarly,
Kuo et al. [35] proposed to learn SVM classifier with texture
feature vector for liver tumor segmentation. Le et al. [34]
employed the fast marching algorithm to generate initial
regions and then classified tumors by training a noniterative
single hidden layer feedforward network (SLFN). To speed up
the segmentation algorithm, Chaieb et al. [38] adopted a boot-
strap sampling approach for efficient liver tumor segmentation.

B. Deep Learning Based Methods

Convolutional neural networks (CNNs) have achieved great
success in many object recognition problems in computer
vision community. Many researchers followed this trend and
proposed to utilize various CNNs for learning feature rep-
resentations in the application of liver and lesion segmen-
tation. For example, Ben-Cohen et al. [17] proposed to use
a FCN for liver segmentation and liver-metastasis detection
in CT examinations. Christ et al. [15], [39] proposed a cas-
caded FCN architecture and dense 3D conditional random
fields (CRFs) to automatically segment liver and liver lesions.
In the meanwhile, Sun et al. [16] designed a multi-channel
FCN to segment liver tumors from CT images, where the
probability maps were generated by the feature fusion from
different channels.

Recently, during the 2017 ISBI LiTS challenge, Han [40],
proposed a 2.5D 24-layer FCN model to segment liver tumors,
where the residual block was employed as the repetitive
building blocks and the UNet connection was designed across
the encoding part and decoding part. 2.5D refers to using
2D convolutional neural network with the input of adjacent
slices from the volumetric images. Both Vorontsov et al. [41]
and Chlebus et al. [42] achieved the second place in the ISBI
challenge. Vorontsov et al. [41] also employed ResNet-like
residual blocks and UNet connections with 21 convolutional
layers, which is a bit shallower and has fewer parameters
compared to that proposed by Han [40]. Chlebus et al. [42]
designed a 28-layer UNet architecture in two individual mod-
els and subsequently filtered the false positives of tumor
segmentation results by a random forest classifier. Instead of
using 3D FCNs, all of the top results employed 2D FCNs with
different network depths, showing the efficacy of 2D FCNs
regarding the underlying volumetric segmentation problem.
However, all these networks are shallow and ignore the
3D contexts, which limit the high-level feature extraction
capability and restrict the recognition performance.

III. METHOD

Figure 2 shows the pipeline of our proposed method for
liver and tumor segmentation. We employed the cascaded
learning strategy to reduce the overall computation time, which
has also been adopted in many recognition tasks [43]–[46].
First, a simple ResNet architecture [40] is trained to get a
quick but coarse segmentation of liver. With the region of
interest (ROI), our proposed H-DenseUNet efficiently probes
intra-slice and inter-slice features through a 2D DenseUNet
f2d and a 3D counterpart f3d , followed by jointly optimizing
the hybrid features in the hybrid feature fusion (HFF) layer
for accurate liver and lesion segmentation.

A. Deep 2D DenseUNet for Intra-Slice Feature Extraction

The intra-slice feature extraction part follows the structure
of DenseNet-161 [25], which is composed of repetitive densely
connected building blocks with different output dimensions.
In each densely connected building block, there are direct
connections from any layer to all subsequent layers, as shown
in Figure 2(c). Each layer produces k feature maps and k is
called growth rate. One advantage of the dense connectivity
between layers is that it has fewer output dimensions than
traditional networks, avoiding learning redundant features.
Moreover, the densely connected path ensures the maximum
information flow between layers, which improves the gradient
flow, and thus alleviates the burden in searching for the optimal
solution in a very deep neural network.

However, the original DenseNet-161 [25] is designed for
the object classification task while our problem belongs to
the segmentation topics. Moreover, a deep FCN network for
segmentation tasks actually contains several max-pooling and
upsampling operations, which may lead to the information loss
of low-level (i.e., high resolution) features. Given above two
considerations, we develop a 2D DenseUNet, which inherits
both advantages of densely connected path and UNet-like con-
nections [5]. Specifically, the dense connection between layers
is employed within each micro-block to ensure the maximum
information flow while the UNet long range connection links
the encoding part and the decoding part to preserve low-level
information.

Let I ∈ Rn×224×224×12×1 denote the input training samples
(for 224 × 224 × 12 input volumes) with ground-truth labels
Y ∈ Rn×224×224×12×1, where n denotes the batch size of
the input training samples and the last dimension denotes
the channel. Yi, j,k = c since each pixel (i, j, k) is tagged
with class c (background, liver and tumor). Let function F
denote the transformation from the volumetric data to three
adjacent slices. Specifically, every three adjacent slices along
z-axis are stacked together and the number of groups can be
transformed to the batch dimension. For example, I2d = F (I),
where I2d ∈ R12n×224×224×3 denotes the input samples
of 2D DenseUNet. The detailed transformation process is
illustrated in Figure 2(d). Because of the transformation,
the 2D and 3D DenseUNet can be jointly trained, which
will be described in detail in section B. For convenience,
F−1 denotes the inverse transformation from three adjacent
slices to the volumetric data. The 2D DenseUNet conducts
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Fig. 2. The illustration of the pipeline for liver and lesion segmentation. Each 3D input volume is sliced into adjacent slices through transformation
process F and then fed into 2D DenseUNet; Concatenated with the prediction volumes from 2D network, the 3D input volumes are fed into the
3D network for learning inter-slice features; Then, the HFF layer fused and optimized the intra-slice and inter-slice features for accurate liver and tumor
segmentation. (a) The structure of H-DenseUNet, including the 2D DenseUNet and the 3D counterpart. (b) The transformation of the volumetric
data to three adjacent slices. (c) The network structure of the 2D DenseUNet. The structure in the orange block is a micro-block and k denotes the
growth-rate. (Best viewed in color).

liver and tumor segmentation,

X2d = f2d (I2d; θ2d), X2d ∈ R12n×224×224×64,

ˆy2d = f2dcls (X2d; θ2dcls), ˆy2d ∈ R12n×224×224×3 (1)

where X2d is the feature map from layer “upsampling layer
5” (see Table I) and ˆy2d is the corresponding pixel-wise
probabilities for input I2d.

The illustration and detailed structure of 2D DenseUNet
are shown in Figure 2(c) and Table I, respectively. The
depth of 2D DenseUNet is extended to 167 layers, referred
as 2D DenseUNet-167, which consists of 167 convolution
layers, pooling layers, dense blocks, transition layers and
upsampling layers. The dense block denotes the cascade
of several micro-blocks, in which all layers are directly
connected, see Figure 2(c). To change the size of feature-
maps, the transition layer is employed, which consists of
a batch normalization layer and a 1 × 1 convolution layer
followed by an average pooling layer. A compression factor
is included in the transition layer to compress the number
of feature-maps, preventing the expanding of feature-maps
(set as 0.5 in our experiments). The upsampling layer is
implemented by the bilinear interpolation, followed by the

summation with low-level features (i.e., UNet connections)
and a 3×3 convolutional layer. Before each convolution layer,
the batch normalization and the Rectified Linear Unit (ReLU)
are employed in the architecture.

B. H-DenseUNet for Hybrid Feature Exploration

2D DenseUNet with deep convolutions can produce
high-level representative in-plane features but neglect the spa-
tial information along the z dimension while 3D DenseUNet
has large GPU computational cost and limited kernel’s field-
of-view as well as the network depth. To address these issues,
we propose H-DenseUNet to jointly fuse and optimize the
learned intra-slice and inter-slice features for better liver tumor
segmentation.

To fuse hybrid features from the 2D and 3D network,
the feature volume size should be aligned. Therefore, the fea-
ture maps and score maps from 2D DenseUNet are trans-
formed to the volumetric shape as follows:

X2d
′ = F−1(X2d), X2d

′ ∈ Rn×224×224×12×64,

ˆy2d
′ = F−1( ˆy2d), ˆy2d

′ ∈ Rn×224×224×12×3, (2)
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TABLE I
ARCHITECTURES OF THE PROPOSED H-DENSEUNET, CONSISTING OF THE 2D DENSEUNET AND THE 3D COUNTERPART.
THE SYMBOL –[ ] DENOTES THE LONG RANGE UNET SUMMATION CONNECTIONS WITH THE LAST LAYER OF THE DENSE

BLOCK. THE SECOND AND FORTH COLUMN INDICATE THE OUTPUT SIZE OF THE CURRENT STAGE IN TWO

ARCHITECTURES, RESPECTIVELY. NOTE THAT “1 × 1, 192 CONV” CORRESPONDS TO THE SEQUENCE

BN-RELU-CONV LAYER WITH CONVOLUTIONAL KERNEL SIZE OF 1 × 1 AND 192 FEATURES.
“[ ]×d” REPRESENTS THE DENSE BLOCK IS REPEATED FOR d TIMES

Then the 3D DenseUNet distill the visual features with
3D contexts by concatenating the original volumes I with the
contextual information ˆy2d

′ from the 2D network. Specifically,
the detectors in the 3D counterpart trained based not only
on the features probed from the original images, but also
on the probabilities of a large number of context pixels
from 2D DenseUNet. With the guidance from the support-
ing contexts pixels, the burden in searching for the optimal
solution in the 3D counterpart has also been well alleviated,
which significantly improves the learning efficiency of the
3D network. The learning process of 3D DenseUNet can be
described as:

X3d = f3d(I, ˆy2d
′; θ3d),

Z = X3d + X2d
′, (3)

where X3d denotes the feature volume from layer “upsampling
layer 5” in 3D DenseUNet-65. Z denotes the hybrid feature,
which refers to the sum of intra-slice and inter-slice features
from 2D and 3D network, respectively. Then the hybrid fea-
ture is jointly learned and optimized in the HFF layer,

H = fH F F (Z; θH F F ),

ˆyH = fH F Fcls (H; θH F Fcls) (4)

where H denotes the optimized hybrid features and ˆyH refers
to the pixel-wise predicted probabilities generated from the
HFF layer fH F Fcls (·). In our experiments, the 3D counterpart
of H-DenseUNet cost only 9 hours to converge, which is
significantly faster than training the 3D counterpart with
original data solely (63 hours).

The detailed structure of the 3D counterpart is shown
in the Table I, called 3D DenseUNet-65, which consists of

65 convolutional layers and the growth rate is 32. Compared
with 2D DenseUNet counterpart, the number of micro-blocks
in each dense block is decreased due to the high memory
consumption of 3D convolutions and the limited GPU mem-
ory. The rest of the network setting is the same with the
2D counterpart.

C. Loss Function, Training and Inference Schemes

In this section, we present more details regarding the loss
function, training and the inference schemes.

1) Loss Function: To train the networks, we employed
weighted cross-entropy function as the loss function, which
is described as:

L(y, ŷ) = − 1

N

N∑

i=1

3∑

c=1

wc
i yc

i log ŷi
c (5)

where ŷi
c denotes the probability of voxel i belongs to class c

(background, liver or lesion), wc
i denotes the weight and

yc
i indicates the ground truth label for voxel i .
2) Training Scheme: We first train the ResNet in the same

way with Han [40] to get the coarse liver segmentation results.
The parameters of the encoder part in 2D DenseUNet f2d

are initialized with DenseNet’s weights (object classification-
trained) [25] while the decoder part are trained with the
random initialization. Since the weights are initialized with a
random distribution in the decoder part, we first warm up the
network without UNet connections. After several iterations,
the UNet connections are added to jointly fine tune the model.

To effectively train the H-DenseUNet, we first optimize
f2d (·) and f2dcls(·) with cross entropy loss L(y, ˆy2d

′) on
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our dataset. Secondly, we fix parameters in f2d(·) and
f2dcls(·), and focus on training f3d(·), fH F F (·) and fH F Fcls (·)
with cross entropy loss L(y, ˆyH ), where parameters are all
randomly initialized. Finally, The whole network is jointly
fine-tuned with following combined loss:

Ltotal = λL(y, ˆy2d
′) + L(y, ˆyH ) (6)

where λ is the balanced weight and set as 0.5 in our experi-
ments empirically.

3) InferenceScheme: In the test stage, we first get the coarse
liver segmentation result. Then H-DenseUNet can generate
accurate liver and tumor predicted probabilities within the
ROI. The thresholding is applied to get the liver tumor segmen-
tation result. To avoid the holes in the liver, a largest connected
component labeling is performed to refine the liver result.
After that, the final lesion segmentation result is obtained by
removing lesions outside the final liver region.

IV. EXPERIMENTS AND RESULTS

A. Dataset and Pre-Processing

We tested our method on the competitive dataset of MICCAI
2017 LiTS Challenge and 3DIRCADb Dataset. The LiTS
dataset contains 131 and 70 contrast-enhanced 3D abdominal
CT scans for training and testing, respectively. The dataset
was acquired by different scanners and protocols from six
different clinical sites, with a largely varying in-plane res-
olution from 0.55 mm to 1.0 mm and slice spacing from
0.45 mm to 6.0 mm. The 3DIRCADb dataset contains
20 venous phase enhanced CT scans, where 15 volumes have
hepatic tumors in the liver.

For image preprocessing, we truncated the image intensity
values of all scans to the range of [-200, 250] HU to remove
the irrelevant details. For coarse liver segmentation in the first
stage, we trained a simple network from resampled images
with the same resolution 0.69 × 0.69 × 1.0 mm3. In the
test stage, we also employ the resampled images for coarse
liver segmentation. For lesion segmentation in the second
stage, the network is trained on the images with the original
resolution. This is because in some training cases liver lesions
are notably small, thus we use images with the original
resolution to avoid possible artifacts from image resampling.
In this test stage, we also employ the images with original
resolution for accurate liver and lesion segmentation.

B. Evaluation Metrics

According to the evaluation of 2017 LiTS challenge,
we employed Dice per case score and Dice global score
to evaluate the liver and tumor segmentation performance
respectively. Dice per case score refers to an average Dice
score per volume while Dice global score is the Dice score
evaluated by combining all datasets into one. Root mean
square error (RMSE) is also adopted to measure the tumor
burden.

In the 3DIRCADb dataset, five metrics are used to measure
the accuracy of segmentation results, including the volumet-
ric overlap error (VOE), relative volume difference (RVD),
average symmetric surface distance (ASD), root mean square

Fig. 3. Training losses of 2D DenseUNet with and without pre-trained
model, 2D DenseNet with pre-trained model, 3D DenseUNet without
pre-trained model as well as H-DenseUNet (Best viewed in color).

symmetric surface distance (RMSD) and DICE. For the first
four evaluation metrics, the smaller the value is, the better the
segmentation result. The value of DICE refers to the same
measurement as Dice per case in the LiTS dataset.

C. Implementation Details

In this section, we present more details regarding the imple-
mentation environment and data augmentation strategies. The
model was implemented using Keras package [47]. The initial
learning rate was 0.01 and decayed according to the equation
lr = lr ∗ (1 − i terations/total_i terations)0.9. We used
stochastic gradient descent with momentum.

For data augmentation, we adopted random mirror and
scaling between 0.8 and 1.2 for all training data to alleviate
the overfitting problem. The training of 2D DenseUNet model
took about 21 hours using two NVIDIA Titan Xp GPUs with
12 GB memory while the end-to-end system fine-tuning cost
approximately 9 hours. In other words, the total training time
for H-DenseUNet took about 30 hours. In the test phase,
the total processing time of one subject depends on the number
of slices, ranging from 30 seconds to 200 seconds.

D. Ablation Analysis of H-DenseUNet on LiTS Dataset

In this section, we conduct comprehensive experiments
to analyze the effectiveness of our proposed H-DenseUNet.
Figure 3 shows the training losses of 2D DenseUNet with
and without pre-trained model, 2D DenseNet with pre-trained
model, 3D DenseUNet without pre-trained model as well
as H-DenseUNet. Note that 3D DenseUNet costs around
60 hours, nearly 3 times than 2D networks. H-DenseUNet
costs nearly 30 hours, where 21 hours are spent for
2D DenseUNet training and 9 hours are used to fine-tune
the whole architecture in the end-to-end manner. It is worth
mentioning that all of the models are run with NVIDIA Titan
Xp GPUs with full memory.
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TABLE II
SEGMENTATION RESULTS BY ABLATION STUDY OF OUR METHODS ON THE TEST DATASET (DICE: %)

1) Effectiveness of the Pre-Trained Model: One advantage
in the proposed method is that we can train the network
by transfer learning with the pre-trained model, which is
crucial in finding an optimal solution for the network. Here,
we analyze the learning behaviors of 2D DenseUNet with
and without the pre-trained model. Both two experiments
were conducted under the same experimental settings. From
Figure 3, it is clearly observed that with the pre-trained model,
2D DenseUNet can converge faster and achieve lower loss
value, which shows the importance of utilizing the pre-trained
model with transfer learning. The test results in Table II
demonstrated that the pre-trained model can help the net-
work achieve better performance consistently. Our proposed
H-DenseUNet inherits this advantage, which plays an impor-
tant role in achieving the promising results.

2) Comparison of 2D and 3D DenseUNet: We compare the
inherent performance of 2D DenseUNet and 3D DenseUNet
to validate that using 3D network solely maybe defective. The
number of parameters is one of key elements in measuring
the model representation capability, thus both 2D DenseUNet-
167 and 3D DenseUNet-65 are designed with the same level
of model complexity (around 40M parameters).

We compare the learning behaviors of two experiments
without using the pre-trained model. From Figure 3, it shows
that the 2D DenseUNet achieves better performance than
the 3D DenseUNet, which highlights the effectiveness and
efficiency of 2D convolutions with the deep architecture. This
is because the 3D kernel consumes large GPU memory so
that the network depth and width are limited, leading to
weak representation capability. In addition, 3D DenseUNet
took much more training time (approximately 60 hours) to
converge compared to 2D DenseUNet (around 20 hours).

Except for the heavy computational cost of the 3D network,
another defective is that only a dearth of pre-trained model
exists for the 3D network. From Table II, compared with
the results generated by 3D DenseUNet, 2D DenseUNet with
pre-trained model achieved 8.9 and 3.0 (Dice: %) improve-
ments on the lesion segmentation results by the measurement
of Dice per case and Dice global score, respectively.

3) Effectiveness of UNet Connections: We analyze the effec-
tiveness of UNet connections in our proposed framework.
Both 2D DenseNet and DenseUNet are trained with the
same pre-trained model and training strategies. The differ-
ence is that DenseUNet contains long range connections
between the encoding part and the decoding part to preserve
high-resolution features. As the results shown in Figure 3,

Fig. 4. Examples of segmentation results by 2D DenseUNet and
H-DenseUNet on the validation dataset. The red regions denote the
segmented liver while the green ones denote the segmented lesions.
The gray regions denote the true liver while the white ones denote the
true lesions.

it is obvious that DenseUNet achieves lower loss value than
DenseNet, demonstrating the UNet connections actually help
the network converge to a better solution. The experimental
results in Table II consistently demonstrated that the lesion
segmentation performance can be boosted by a large margin
with UNet connections embedded in the network.

4) Effectiveness of Hybrid Feature Fusion: To validate the
effectiveness of the hybrid architecture, we compare the
learning behaviors of H-DenseUNet and 2D DenseUNet. It is
observed that the loss curve for H-DenseUNet begins around
0.04. This is because we fine tune the H-DenseUNet on
the 2D DenseUNet basis, which serves as a good initializa-
tion. Then the loss value decreases to nearly 0.02, which
is attributed to the hybrid feature fusion learning. Figure 3
shows that H-DenseUNet can converge to the smaller loss
value than the 2D DenseUNet, which indicates that the
hybrid architecture can contribute to the performance gains.
Compared with 2D DenseUNet, our proposed H-DenseUNet
advances the segmentation results on both two measurements
for liver and tumor segmentation consistently, as shown in
Table II. The performance gains indicate that contextual
information along the z dimension, indeed, contributes to
the recognition of lesion and liver, especially for lesions
that have much more blurred boundary and considered to
be difficult to recognize. Figure 4 shows some segmentation
results achieved by 2D DenseUNet and H-DenseUNet on
the validation dataset. It is observed that H-DenseUNet can
achieve much better results than 2D DenseUNet. Moreover,
we trained H-DenseUNet in an end-to-end manner, where
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TABLE III
LEADERBOARD OF 2017 LIVER TUMOR SEGMENTATION (LITS) CHALLENGE (DICE: %, UNTIL 1ST NOV. 2017)

Fig. 5. Examples of liver and tumor segmentation results of
H-DenseUNet from the test dataset. The red regions denote the liver
and the green ones denote the tumors.

the 3D contexts can also help extract more representative
in-plane features. The end-to-end system jointly optimizes the
2D and 3D networks, where the hybrid feature can be fully
explored. Figure 5 presents some examples of liver and tumor
segmentation results of our H-DenseUNet on the test dataset.
We can observe that most small targets as well as large objects
can be well segmented.

E. Comparison With Other Methods on LiTS Dataset

There were more than 50 submissions in 2017 ISBI and
MICCAI LiTS challenges. Both challenges employed the same
training and test datasets for fair performance comparison.
Different from the ISBI challenge, more evaluation metrics
have been added in the MICCAI challenge for comprehensive
comparison. The detailed results of top 15 teams on the
leaderboard,1 including both ISBI and MICCAI challenges,
are listed in Table III. Our method (team name: xjqi, entry
date: Nov. 17, 2017) outperformed other state-of-the-arts on
the segmentation results of tumors and achieved very com-
petitive performance for liver segmentation. For tumor burden

1https://competitions.codalab.org/competitions/17094#results

evaluation, our method achieved the lowest estimation error
and ranked the 1st place among all the teams. It is worth
mentioning that we used ten entries on the test dataset for
ablation analysis of our method. Since there is no validation
set provided by challenge organizers, the ablation experiments
were performed on test dataset for fair comparison. Please
note that the final result is just one of these entries, instead of
multiple entries averages.

Most of the top teams in the challenges employed deep
learning based methods, demonstrating the effectiveness
of CNN based methods in medical image analysis. For
example, Han [40] Vorontsov et al. [41] and Bi et al. [49]
all adopted 2D deep FCNs, where ResNet-like residual
blocks were employed as the building blocks. In addition,
Chlebus et al. [42] trained the UNet architecture in two indi-
vidual models, followed by a random forest classifier. In com-
parison, our method with a 167-layer network consistently
outperformed these methods, which highlighted the efficacy
of 2D DenseUNet with pre-trained model. Our proposed
H-DenseUNet further advanced the segmentation accuracy for
both liver and tumor, showing the effectiveness of the hybrid
feature learning process.

Our method achieved the 1st place among all state-of-the-
arts in the lesion segmentation and very competitive result
to DeepX [48] for liver segmentation. Note that our method
surpassed DeepX by a significant margin in the Dice per case
evaluation for lesion, which is considered to be notoriously
challenging and difficult. Moreover, our result was produced
by the single model while DeepX [48] employed multi-model
combination strategy to improve the results, showing the
efficiency of our method in the clinical practice.

F. Comparison With Other Methods
on 3DIRCADb Dataset

To validate the effectiveness and robustness of our method,
we also conduct experiments on 3DIRCADb dataset [56],
which is publicly available and offers a higher variety and
complexity of livers and lesions. Table IV and Table V show
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TABLE IV
COMPARSION OF TUMOR SEGMENTATION RESULTS ON 3DIRCADB DATASET

TABLE V
COMPARSION OF LIVER SEGMENTATION RESULTS ON 3DIRCADB DATASET

the comparison of the tumor and liver segmentation perfor-
mance on the 3DIRCADb dataset. We compared our method
with the state-of-the-art method [39] on the 3DIRCADb
dataset by running experiments through cross-validation, as the
way used in [39]. We can see that our method achieved
the better performance than [39] on both lesion and liver
segmentation accuracy, with 9.0% and 0.4% improvement on
DICE, respectively. To further validate the effectiveness of
our method, we ran experiments with methods of Unet [42]
and ResNet architecture [40] respectively, where the training
setting keeps the same with Christ et al. [39]. From Table IV
and Table V, we can see that our method still outperforms
Unet [42] and ResNet [40] on the 3DIRCADb dataset, with
14.0% and 5.0% improvement on DICE for tumor segmenta-
tion respectively. The experimental comparison validated the
superiority of our proposed method in comparison with other
methods.

To have a comprehensive comparison with liver tumor
segmentation methods, we listed the reported tumor and liver
segmentation results on the 3DIRCADb dataset below the
bold line in Table IV and Table V, respectively. Note that
except experiments [40] and [42], all other experiment results
are the reported values in the original papers. It is worth
noting that most liver tumor segmentation methods [16], [19],
[52]–[55] utilized additional datasets for training and tested
on the 3DIRCADb dataset. For example, Li et al. [52],
Sun et al. [16] and Lu et al. [19] collected additional clinical
data from hospitals as the training set. Moghbel et al. [53]
utilized additional the MIDAS dataset while Li et al. [54] used
the SLIVER07 dataset in the training, respectively. In addition,

Foruzan and Chen [50] and Wu et al. [51] achieved good
results on tumor segmentation by semi-automatic methods.
Actually, these methods cannot be compared directly with each
other due to the differences in the training dataset and whether
is fully-automatic or not. However, to some extent, the reported
results on the 3DIRCADb dataset can reflect the state-of-the-
art performance for the lesion and liver segmentation task.
Here, we employed the LiTS dataset as the additional dataset.
Specifically, we directly tested the well-trained model from
2017 LiTS dataset on the 3DIRCADb dataset. As shown in
Table IV and Table V, our method achieves the best tumor
and liver segmentation results on the 3DIRCADb dataset,
surpassing the state-of-the-art result largely, with 10.7% and
7.1% improvement on DICE for tumor and liver segmentation
respectively. The promising result indicates the effectiveness
and good generalization capability of our method. On the
other hand, such a good result is also attributed to the LiTS
dataset, which contains a huge amount of training data with
large variations, and the ability of our method to extract
discriminative features from this dataset. Figure 6 shows some
examples of the results on the 3DIRCADb dataset. It is
obvious that our method can well segment the liver and liver
lesions from challenging raw CT scans.

V. DISCUSSION

Automatic liver and tumor segmentation plays an important
role in clinical diagnosis. It provides the precise contour of the
liver and any tumors inside the anatomical segments of the
liver, which assists doctors in the diagnosis process. In this
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Fig. 6. Examples of our segmentation results on the 3DIRCADb dataset.

Fig. 7. Tumor size (tumor voxels number) in each patient of our validation
dataset. We define the orange line to seperate the large-tumor and the
small-tumor group.

paper, we present an end-to-end training system to explore
hybrid features for automatic liver lesion segmentation, where
the 3D contexts are effectively probed under the auto-context
mechanism. Through the hybrid fusion learning of intra-slice
and inter-slice features, the segmentation performance for liver
lesion has been improved, which demonstrates the effective-
ness of our H-DenseUNet. Moreover, compared with other
3D networks [10], [18], our method probes 3D contexts effi-
ciently. This is crucial in the clinical practice, especially when
huge amount of 3D images, containing large image size and a
number of slices, are increasingly accumulated in the clinical
sites.

To show the generalization capability of our method in the
clinical practice, we tested our trained model from the LiTS
dataset on the 3DIRCADb dataset, and it achieved the state-
of-the-art results on both liver and tumor segmentation, with
98.2% and 93.7% on DICE. The promising results achieved
on the 3DIRACDb dataset also validated that our method is
not simple overtraining, but actually is effective to generalize
to different dataset under different data collection conditions.

To have a better understanding about the performance gains,
we analyze the effectiveness of our method regarding the liver
tumor size in each patient. Figure 7 shows the tumor size
value of 40 CT volume data in our validation dataset, where

TABLE VI
EFFECTIVENESS OF OUR METHOD REGARDING

TO THE TUMOR SIZE (DICE: %)

the tumor size is obtained by summing up tumor voxels in
each ground-truth image. It is observed that the dataset has
large variations of the tumor size. For comparison, we divide
the dataset into the large-tumor group and the small-tumor
group by the orange line in Figure 7. From Table VI, we can
observe that our method improves the segmentation accuracy
by 1.48 (Dice:%) in the whole validation dataset. We can also
observe that the large-tumor group achieves 2.35 (Dice:%)
accuracy improvements while the score for the small-tumor
group is slightly advanced, with 1.1 (Dice:%). From the
comparison, we claim that the performance gain is mainly
attributed to the improvement of the large-tumor data segmen-
tation results. This is mainly because that the H-DenseUNet
mimics the diagnosis process of radiologists, where tumors
are delineated by observing several adjacent slices, especially
for tumors have blurred boundaries. Once the blurred bound-
aries are well segmented, the segmentation accuracy for the
large-tumor data can be improved by a large margin. Although
the hybrid feature still contributes to the segmentation of small
tumors, the improvement is limited since small tumors usually
occur in fewer slices. In the future, we will focus on the
segmentation for small liver tumors. Several potential direc-
tions will be taken into considerations for tackling small liver
tumor problem, i.e., multi-scale representation structure [57]
and deep supervision [18]. Recently, perceptual generative
adversarial networks (GANs) have been proposed for small
object detection and classification [58], [59]. For example,
Li et al. [58] generated superresolved representations for small
objects by discovering the intrinsic structural correlations
between small-scale and large-scale objects, which may also
be a potential direction for handling this challenging problem.

Another key that should be explored in the future study is
the potential depth for the H-DenseUNet. In our experiments,
we trained the network using data parallel training, which is
an effective technique to speed up the gradient descent by
paralleling the computation of the gradient for a mini-batch
across mini-batch elements. However, the model complexity
is restricted by the GPU memory. In the future, to exploit
the potential depth of the H-DenseUNet, we can train the
network using model parallel training, where different portions
of the model computation are done on distributed computing
infrastructures for the same batch of examples. This strategy
maybe another possible direction to further improve the liver
tumor segmentation performance.

VI. CONCLUSION

We present an end-to-end training system H-DenseUNet for
liver and tumor segmentation from CT volumes, which is a
new paradigm to effectively probe high-level representative
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intra-slice and inter-slice features, followed by optimizing the
features through the hybrid feature fusion layer. The architec-
ture gracefully addressed the problems that 2D convolutions
ignore the volumetric contexts and 3D convolutions suffer
from heavy computational cost. Extensive experiments on
the dataset of 2017 LiTS and 3DIRCADb dataset demon-
strated the superiority of our proposed H-DenseUNet. With
a single-model basis, our method excelled others by a large
margin on lesion segmentation and achieved very competitive
result on liver segmentation on the LiTS Leaderboard.
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